Background

• Relationship between oral reading rate and i) linguistic features & ii) general cognitive processes (Caneva, 2014; Fernand, 2013; Stecula, 1996; New et al., 2016).

• Investigation of oral and silent reading rates with respect to language level (Pellegrino et al., 2009; O'Brien et al., 2013; Wright, 2011).

• Non-linear positive correlation between self-paced reading time and word expectation (Souch & Levy, 2013).

• Compensation between oral reading rate and average amount of information carried by syllables (Pellegrino et al., 2011).

Research goals

• Address an under-researched question: how do silent and oral reading rates vary cross-linguistically?

• Better understand the cognitive and articulatory processes underlying reading: what is the impact of syllabic complexity on oral and silent reading rates?

• Study the relationship between text length and reading duration: what are the effects of increasing word predictability and cognitive load?

Main findings

• Silent and oral reading rates are strongly correlated across languages

 — Cross-linguistic differences in word structure complexity influence phonological processing in both reading modes

 — Results from (Pellegrino et al., 2011) are confirmed and extended

 — Information density and both silent and oral reading rates are negatively correlated at language-level

 — A logarithmic relationship exists between text length and reading duration, for both silent and oral reading

 — Word predictability seems to increase with longer texts.

• Sex is a significant predictor of oral but not silent reading rate

 — A sociolinguistic effect of sex when it comes to orality?

• Languages with different writing systems have similar reading rates

 — The writing system does not seem to impact reading speed

Perspectives

• Evaluate participants’ reading skills and text comprehension (e.g. with self-paced reading) to better assess inter-individual variation

 — Record silent and oral rates in a more symmetrical fashion

 — Recordings with Rocme! (Ferragne et al., 2013)

 — Strong positive correlations between silent and oral reading rates (table 1)

 — Result confirmed by M-E models: significant effects on SilSR_t and OrSR_t as fixed effects, and of Text and Subject as random effects ($p < .001***$ for all effects). No effect of Sex

 — Strong negative correlation between 1D and both OrSR_t and SilSR_t at language level ($\text{Spearman's Rho} = -.81, p=.021^*$) (fig. 2)

 — Result confirmed by M-E models: significant effects of 1D, Language, Text and Subject ($p < .001**$) on both SilSR_t and OrSR_t. Significant effect of Sex only on OrSR_t ($p=.019^*$)

Comparison of oral and silent syllabic rates

• Noticeable differences of SilSR_t and OrSR_t between languages (fig. 1)

• Correlated with information density, syllabic rate and duration; Use of Vietnamese as a reference language to normalize computations and avoid quantifying semantic content

Methodology

• Pauses longer than 150ms in the oral recordings discarded with Praat

• Computations of information density, syllabic rate and duration; Kept pauses in the oral recordings

• Relationship between oral reading rate and i) linguistic features & ii) general cognitive processes (Chetail, 2014; Ferrand, 2000; Naveh-Benjamin & Ayres, 1986; New et al., 2006)

• Better understand the cognitive and articulatory processes underlying learning (Jacewicz et al., 2009)

• Collection of reading times

• Recordings with RSRP and CMN, SRP, and both models (p < .001***)

• Stronger correlation between SilSR_t and SilD ($r = .67$, ***), weaker prediction and no effect of Sex

• Averaged by speaker (N = 80) Pearson's R: .67***

• All data (N = 1161) Pearson's R: .60***

• Data set Correlation coef. [Average by speaker] $r = .67***$

• Comparison of oral and silent syllabic rates

• Strong positive correlation between 1D and both OrSR_t and SilSR_t at language level ($\text{Spearman's Rho} = -.81, p=.021^*$) (fig. 2)

• Result confirmed by M-E models: significant effects of 1D, Language, Text and Subject ($p < .001**$) on both SilSR_t and OrSR_t. Significant effect of Sex only on OrSR_t ($p=.019^*$)

• Weak correlation between SilD and the number of syllables (ρ (Pearson’s $R = .11, p < .001**$)), stronger correlation between OrD and ρ (Pearson’s $R = .71, p < .001**$)

• Comparison of 3 different M-E models with OrD as dependent variable, Sex and either i) $\log(\rho)$ or ii) $\exp(\rho)$ as fixed predictors, and Text, Language, and Subject as random predictors:

 — Significant effects for Text, Subject, Language and Sex in all three models

 — Best prediction obtained with $\log(\rho)$. Significant improvement over the two other models ($p < .001***$)

 — Similar results with SilD, but weaker prediction and no effect of Sex

References

