Quantitative Approaches to Phonological Complexity: the Case of East Asian Languages

Yoon Mi OH & François PELLEGRINO
Dynamique du Langage Laboratory

KACL 2012,
December 10, 2012
Overview

1. Theoretical framework
2. Corpus description and analysis method
3. Results
4. Perspectives
Overview

1. Theoretical framework
 -> Human language is a “complex system”!

2. Corpus description and analysis method

3. Results

4. Perspectives
Our hypothesis

• Human language is a complex system. : trade-off, balance, self-organization.

• Information theory point of view : A trade-off (self-organization) exists between the speech rate and the information density in human communication, regardless of their coding system (Pellegrino et al. 2011).
Phonological complexity

• Two ways of measuring phonological complexity

 - **Linguistic approach**
 - Average syllabic complexity in terms of number of constituents (number of segments + tone).

 - **Quantitative approach**
 - “Syllabic entropy” (calculated from the distribution of syllable frequencies), notion adapted from the Information theory.
Overview

1. Theoretical framework

2. Corpus description and analysis method
 -> Multilingual oral and text corpus of East Asian languages

3. Results

4. Perspectives
Multilingual Oral corpus

• Description

- Subset of multilingual oral corpus in Japanese, Korean, Mandarin supplied by EUROM 1 corpus extracted for the MULTEXT project (Campione & Véronis (1998), Komatsu et al. (2004), Kim et al. (2008)).

- 20 short texts (of 3-5 semantically connected sentences) translated in each language with local adaptation when necessary.

- 6 speakers for Japanese, 10 for Korean, 9 for Mandarin.
Example of oral script

<table>
<thead>
<tr>
<th>Language</th>
<th>Passage: 01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japanese</td>
<td>1. 家の浄水器の調子が悪いです。2. 水圧が高すぎるみたいで、排水口からずっと水滴がたれています。3. すみませんが、火曜日の午後に技術者派遣の手配をしていただけますか？4. 今週は火曜日しか都合がつけられないのでです。5. 念のために書面にて手配確認してもらえるとありがたいです。</td>
</tr>
<tr>
<td>Korean</td>
<td>1. 연수기가 고장이 났습니다. 2. 수위가 너무 높아서 물이 계속 넘치거든요. 3. 다음주 화요일 아침에 사람을 좀 보내주실 수 있으세요? 4. 제가 다음주는 그날 밖에 시간이 안되거든요. 5. 정확한 일정을 메일로 보내주시면 감사하겠습니다.</td>
</tr>
<tr>
<td>Mandarin</td>
<td>1. 我的净水器出毛病了。2. 水位太高，所以水总是流出来。3. 您能不能派人星期二早上来看一下？4. 这星期我只有那天有空。5. 来之前最好能先来个电话。</td>
</tr>
</tbody>
</table>

Nb of syllables: 120 | Nb of syllables: 89 | Nb of syllables: 57
• **Basic notions**
 - **Syllable rate**
 : Number of syllables uttered per second.
 - **Information density**
 : Amount of linguistic information per syllable.
 - **Information rate**
 : Amount of information transmitted per unit of time.

• **Analysis method**
 - **Syllable rate** is calculated by removing silence intervals longer than 150ms.
 - **Information density** and **information rate** are calculated respectively by pairwise comparisons of the total number of syllables per each text and the mean duration of data, using Korean as a reference.
Multilingual text corpus

• Description

- Large text corpus (internet, newspapers, books, etc) which are available online.

- Different resources for each language.
 (# of different syllables: 416, total # of syllables: 575.7M)
 (# of different syllables: 2026, total # of syllables: 31.2M)
 (# of different syllables: 1191, total # of syllables: 138M)
• **Analysis**

- **Information theory-based approach**: Language L is a source of linguistic sequences composed of syllables (σ) from a finite set (N_L) (Pellegrino 2012).

- **Syllabic entropy**:

 $$H_L = - \sum_{i=1}^{N_L} p_{\sigma_i} \log_2(p_{\sigma_i})$$

 - Cognitive cost of using a syllable (Ferrer i Cancho & Díaz- Guilera 2007)
 - Quantity of information of a syllable
 - probability ↓ information (entropy) ↑
 - probability ↑ information (entropy) ↓
 - $p=1$, no information
Overview

1. Theoretical framework

2. Corpus description and analysis method

3. Results

4. Perspectives
- Syllable rate of Japanese, Korean & Mandarin

<table>
<thead>
<tr>
<th>Language</th>
<th>Syllable rate</th>
<th>Confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>JA</td>
<td>7.86</td>
<td>0.07</td>
</tr>
<tr>
<td>KOR</td>
<td>6.88</td>
<td>0.09</td>
</tr>
<tr>
<td>MA</td>
<td>5.18</td>
<td>0.13</td>
</tr>
</tbody>
</table>
Informa%on density, syllable rate & informa%on rate of Japanese, Korean & Mandarin

-> Negative correlation (trade-off) between information density and syllable rate, regardless of information rate which varies little.
- Relation between information rate and syllabic entropy

- Syntagmatic dimension (information rate) and paradigmatic dimension (syllabic entropy) of phonological complexity are related.
• In conclusion

- Our hypothesis: trade-off between syllable rate and information density -> stable value of information rate.

- Syllabic entropy: efficient method for computing phonological complexity -> no need to count the # of syllable constituents.

- Adding “1” for the tone in case of Mandarin, without taking the pitch accent into account in case of Japanese.

- Syllabic entropy/phonological complexity (paradigmatic dimension) and information rate (syntagmatic dimension) can be positively correlated -> need to add more languages to verify it!
Overview

1. Theoretical framework

2. Corpus description and analysis method

3. Results

4. Perspectives
Perspectives

• Language universal?
 : To prove our hypothesis (trade off between syllable rate and information density, which regulates information rate) -> add more typologically distant languages (14 languages for now: Bas, Cat, En, Fa, Fr, Ge, Hu, It, Ja, Kor, Ma, Sp, Tur, Wo).

• Study of syllable rates of bilinguals (Basque-Spanish and Catalan-Spanish speakers in Spain)

• Expansion of the notion of complexity to morphological and syntactic level.
References

감사합니다!

Merci beaucoup!