Social structures and their influence on language change

Erice Summer School
"Statistical Physics of Social Dynamics: Opinions, Semiotic Dynamics, and Language”

Wednesday, July 18, 2007

Christophe Coupé
Laboratoire Dynamique du Langage (CNRS - University of Lyon)
Evolution of languages, not emergence of language!

- Raise different questions, both linguistically and with respect to network theory
- How can models of opinion dynamics, complex networks etc. be of help to linguists?
Language change

- All languages keep changing (Sapir, 1921)
 - No final stage of evolution

Because of contradictory constraints
 - Physiological & cognitive constraints
 - *Social constraints*
 - language as a tool to assert one’s identity [Labov, 1972]
Social networks & language change

- Sociolinguists have been wondering about social ties and their influence...
 - Clusters, socio-economic classes, weak vs. strong ties etc.

 “The leaders of linguistic change are people at the center of their social networks, who other people frequently refer to, with a wider range of social connections than others.” [Labov, 2001, p.356]

- ... but... limits of micro-scale “field” analyses

from [Milroy, 1992]
What’s next?

i) Consider 3 linguists’ questions regarding language change

ii) Consider how network theory and its models may help investigate them

iii) Show that such issues may suggest research on networks themselves
Problem n°1: Languages of the past

Evolution of social structures during prehistory
from small & mobile groups of hunters-gatherers…
… to sedentary & larger populations

Which situation before the Holocene?
• Linguistic level: faster or slower evolutions? diversity?
 (Is it possible to reconstruct the putative ancestor of all modern languages?)

More generally: cultural interactions?

no direct evidence, few indirect cues!
To explain a theoretically impossible evolution in Middle English, Weinrich, Herzog & Labov (1968) came up with the following sequence:

How could variant B appear, be maintained and then disappear?
Problem n°3: Changes disrupting linguistic systems

Disappearance of /p/, /t/, /k/ in final position in some Chinese “dialects” during the past (Wang & Chen, 1975)

/pat/ → /pa/
/pak/ → /pa/

Homophony → ambiguity → Did it impede communication?

If yes, why did this change happen? (tout-se-tient!)
If no, how did the system remain balanced?
(Other simultaneous changes like disyllabification?)
Adopting a “sociophysical” reading

Interest in elaborate dynamics, variations, meta-stability etc. … not so much in asymptotic states, final equilibriums etc.

How does complex network structures prevent / ease the diffusion of innovations?

Which social structures allow for dynamics involving meta-stable linguistic states?

Can an emerging variant less functional than the dominant one spread in a population?
Some finer-grained issues…

- Debates on the mechanisms creating linguistic variation
- Internal (linguistic) factors vs. external factors (social influence)
 - How do they *together* drive the competition between linguistic variants?
- Which model to adapt/build to relate relevant sources of variability to real observed dynamics?
Few models have been specifically developed to address the former issues
(is this a naive linguist’s statement?)

= common situations of language change
(not “abrupt” situations like language extinction or emergence)
Nettle’s model (1999): overview

- 2 linguistic variants: p & q

- **Source of variation:**
 - speakers’ replacement (5 life stages) & imperfect learning

- **Social structure**
 - Fully connected network (N=400)
 - weights decreasing with distance

- **Driving factors:**
 - social influence
 - neighbor’s variants & status
 - social impact theory
 - functional bias

\[
\hat{i}_p = b_p N_p^a \sum_{\text{neighbors}} \left(\frac{s_i}{d_i^2} \right) / N_p
\]
Nettle’s model (1999): results

- To observe the diffusion of changes and solve the “threshold problem”
 - Need for extremely influential individuals
 - Can impose their choices to others, even at a distance
 - Functional bias?
 - Unless very high, seems less influential than social selection

- Larger populations → less communal changes
Beyond Nettle’s original model

- ≠ social structures → ≠ dynamics
 - no status here

(Ke, Gong & Wang, 2004)

Condition 3: N=500, <k>=20, \(B =2 \), I=100

- regular network
- small-world network
- random network
- scale-free network

Depending on the structure,

average diffusion time & proba successful diffusion ~ population size (or not)
Do these models solve all problems?

- Are hyper-influential individuals realistic?
 - Maybe but…basically influential enough to flip the whole community (no real diffusion)
 - Scaling problem?

- Functional bias
 - Without hyper-influential individuals, variants without bias in their favor do not spread
 - Especially variants with a negative bias never spread

- Meta-stable states?
 - Never observed in the simulations; either most of the population chooses p, either it chooses q
On-going attempts (1)
Refining the social structure

- Make the social structures more heterogeneous to observe meta-stable situations

- “Social clusters” in a modified small-world network
 - Each agent belongs to a social “group”
 - Rewiring probability $Pr +$ probability Pc that the rewiring takes place in the same social “group”
An example of network with 4 social groups

Parameters:
N = 400, <k>=6
Pr = 0.1; Pc = .85

Here:
3 groups with the “BLUE” variant, 1 with the “BLUE” one
On-going attempts (2)
Introducing “repulsion”

- A suggestion
 - “Anspach in The Why of Fashion (1967) argues that the initiating spark is the need of people to be like others and yet to be distinct from others.” [Labov, 2001, p.361]
 - “To be distinct” \rightarrow <0 links between speakers

- Axelrod’s model
 - Attraction (d<d0) or indifference (d>d0)

- For language
 - *Active* “attraction” & “repulsion”
Introducing negative weights

- < 0 weights are hardly studied in network theory (?)
 - all measures (Cc, av. path lengths etc.) are based on >0 weights
 - very few guidelines + problem for analysis

- For each speaker:

- A preliminary attempt to introduce <0 links
 - Modify the previous algorithm with social groups
 - When rewiring toward another social group, probability \(P_n \) to introduce a <0 weight \(\rightarrow \) inter-group repulsion & attraction
Observation of meta-stable states

No functional bias
No status, 4 groups
Pr=0.1, Pc=0.85, Pn=0.5

Punctuated equilibrium

Clustering & <0 weights: structure variations in patterns of punctuated equilibriums

Is it realistic?

Does it help for the threshold problem?

Diffusion of variants with <0 bias: not yet observed…
Conclusion & Perspectives

- Language change raises its own questions
 - Overlap with language emergence, but shift of focus

- Dynamical processes on social structures
 - How to structure the population to reproduce observed phenomena?
 - Richness of modeling choices (discrete vs. continuous, synchronous vs. asynchronous evolution, (un)directed graphs etc.) to deal with

- A dual reward
 - Some interesting questions to be addressed in linguistics
 - Some nice theoretical challenges for sociophysicists
Thank you for your kind attention

Acknowledgment:
T. Gong, J. Ke, J.-M. Hombert, W. Wang, OMLL Program