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AUTOMATIC LANGUAGE IDENTIFICATION:

AN ALTERNATIVE APPROACH TO PHONETIC MODELLING

Prongois PELTLEGRING Regine ANDRE-OBRECHT

Absiract

This paper deals with our vesearch on vowel system modelling in an Automatic
Language Mdentification (ALD purpose The stely of vowel sysiems shows tha they Ciry an
mportant part ol e fangeage characieristics and taking advantage of this knowledge is
promising. We propose an alternadive modeling to the standard acoustic-phonctic decoding

currentiy used as fontend in e AL svenis we model eseh Bt vovibe sysien as o

Claussian s ime Hhat s estmiied saf rom antoratically detected vowels

We use the QGE MLTS {Multi-Lingual Felephone Speech) 1o ussess 1his approach,
and ina S language close <et identification task. we reach §7.3 % of coredt identification with
AS second dordion ulteranees, Taking sato acconm il we use onty the vowel inlornation
thess than 2.5 secomds per wlleranee) and no Fanguage modelling, these results e very
p:'mnixiﬂg and of fee many peispectives

Résune

Cet article est consacrd a 1o modélisation des systémes voeatiques of A leur utilisation
dans e cadre de Videntificaion astomatigue des nzoes Létnde des sydimes veealiguoes
frenze o il sont pericear dane gt importante e Finbonnation caracicnstioque de vhagie
Fangue, ot Vexplonation de tefies connaissances dang un sysseme aulontticue esl évidemment
une perspective iméressanie. Dans cetig optique, nous proposons de modifier e décodage
acenstice-phondtique chissiquement witisé dans les SSICeS actoeks s un modele de svacme
vocalique est edime pow chagae Bmgue clodide a0 pastie des vavelfes  déiectdes
antomatiguement dans e sianal

o enpraences wont anenee, et e e pe e e st coipare O N
M Lingoal Tebephone Specc) 1 hams une e be drdennfwcannn de 3 Tnpoes (sans [INTESN
nous ehtepons 7.3 % ¢ identification correcte avee des phrases dooe durde de 45 seeomdes
Ces résultals sont obtenus en atifisunt uniguement ks voyelles extraites <y sigmal, et en
moyenne moms de 28 secondes de parole par plimse © de Plus nogs ouiinons awcun iodide
de Tngage. Llintegration de cone modélismtion dans sasteme dslenttication des Limgnes

plus complexe ext une des nombreuse perspectives,

1 Introduction

Automatic Language Identification (ALL) is one of the main challenge for the XXT™
century in automatic speech processing. Applications of modern communication technologies
are alrendy a reality. and the growing demand for integrated services will confirm this
wendency. Today, many efforts have been focused on speech technology (o provide reliable
and efficient Human-Computer Iaterfaces (HCls), especially Interactive Voice Systems and
Text to Speech Synthesis Systems. With the devetopment of the world communication and of
owr multi-ethnic sociclies (European Economic Community,..), customers wanl 1o pass
through the language obstacle and the demand for multilingual capacities becomes a fact. ALI
is the original process to respond to this requirement. The language obstacle will remain until
ALF systems reach excellent performances and reliability in order not to be the hottleneck of
the entire HCT system. Another situation that recueires an efficient AL system is deseribed in
IMuthusamy 94]. When someone calls the §11 emergency felephone number in the United
States. a human operator is in charge with identifying the language spoken by the calier and
with routing it to the sight interpreter. Fven il husisn i one of the most efficient language
identificr, the tension and the responsibitity can alier the operator capacities. For example,
calt from Y. K. Muthusamy results in a 3 minute delay to identify that he was speaking in
Tamil. If an ALI system is able 1o identify the right language or at least to assist the operator
in his decision — providing & shost list of potestial Tanguages for example ~ a great step in
safety will be pecloried.

Fhe frst way 10 reach nulti-linguality in 131C1 is 10 design intrinsically multi-lingual
systems, feo systems abde 1o hamdie with several Enguages Hamel 96]. Such sysiems are
gaite dilficuit 10 develop. and e extended capacities (more thar one single tanpuage) arc
often achieved to the disadvantage of the efficiency in cach language.

The other way 0 ge1 round nudii-dinguality is o design a specific system tha
tdentifies the spoken kngueage and (o use i1 as o front-end for several lingunge-specific HCs.
This way, the efficieney of HCls is optimal and the use of a specific language identification
system allows the designers to independently optimise cach stage of the overall sysiess.

This paper deals with the design of AL systems, and more specifically with their
phonetic decoding stage. We investigate the oppeitanity to integrate sonwe phonological
knowledpe  like Vowel System infornation 1o the classical phonetic approach'. The 2™
section provades a hamewsrth of the Tanpuape Identitication, deseribine what kil of
sormation can be exploited and olhwiousty what Teatores aee acluatly taken into aceount in
sifomatic wentilication systems. We will also discuss in this section the advantages and facks
ol such svstems, and our voealic appoach is introduced.

The theoretic Tamework ax well as the speech processing alporithms we use are
deseribud 1 Section 3. The impleniented platform is detailed in Section 4 while Section §
deats with the experiments we realise in a real Fnguage identification sk using the QG
multi-lingual welephone xpecel corpus U is brictly deseribed




2 A Short Review of Automatic Language identification
From the “Coues de linguistique péndrale™ wiitten by Sausstie in 116 10 the i
recent rescarches deating with Tangumge structure fCamd 95, Valkée V4. numy linguisis hive
studied simitarities and ditferences among languages. Due to the intiinsic siicture of spoken
language {speech production and perception of course, but alse cognitive structure of the
language) many levels can be taken into account o iclentily and characterise a Janguage Ina
recent book [Ruhlen 977 the author presenis his theery aboul @ common origin 1o fanguages,
This publication is the core of a discussion in the linguisi community, and it shows clearly

that it remains interesting investigations to pursue,

Although linguists study language charactertisation for almost 2 coentury, Automatic
Language Hdentification is o recent research theme since the first researches arose in the
seventies al the demand of the US Al Force [Leonard 78], During a seore years designed
systems remained confidential and a wide range of approaches have been investigated. The
beginning of the nineties marks the dawn of a new aren for ALL Computational capacitics
strongly increase and offer now possibilitics: Aviematic Speech Recognition (ASRY becomes
reliant and the demand for real-fife cvsiems grows consegaently. 1 oresulis it g ronewed
mterest for connected topics, Hhe avtomatic speaker identification and aumomatic fanguape
identilication. The reader can reler (o Pt iy Q4] far o more exbaustive summmary of the

pastand present rescarches i Antomatic ingaage demilication,

2 Langrave diseriminating foatrres

A wide range of distinetive features are available 1o ehamecterise o lnguage, They are
present i several sowsees that can be chistered i fwa categorics depending on swhether thes

are Tow-Teved or et

201 Low tevel characieristics
We pnther i this clme the Tentores that e be dereetly espacied Trom e aconsan

sigmad, We distingund the ledowing fevels
- Phonenice Teved

Evenif the human speceh production is g phesemenan shired by the whole manking.
the diversity of the resulling sounds is quite substantial. The UPSID database, that
consists i a 431 language inventory chosen (o he representative ol the abow 30060
Raingeages spoken in e world [Maddicson 861 enumerates 920 dilforent sounds
tincluding 177 vowels, 133 occlusives ) Par exanple, the phone "8 s present in

the English phonctie system amd not in the Freneh one. inventorying the sounds

5

present in an utteranee i g way to diseriminate amaong candidaies Binguages.

Phcnotactie § el

When the pliones of i given Linguage lune been idenihied., the way they combinge
cach othesis vty diverimimting. A given sequence of plones can be Staisticndy
spmfleant e ome Lssape and totall foriskdon o another one o canngle
cohiorbe e U eonaant e gquie wemsaal g Lieiec b and then oo e o RTTSRN PR 3 AN

tited swlile i e D common i oflwe Loy The sitinticad anabesis of these

n
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phone sequences is vadoubtedy relevant and a ot ol sysems take advaniage [ron it
FRwan 95, Jawdino 961,
« Prosedic Level

The study of the fundamental frequency (pitch) for different languages shows that
each language develops its own patterns, in term of phone deration and intonation. In
{Hutchins 941 classification according 1o unit of tone patlern i< given, from
syllable (tomal languages - e.g. Mandarin Chinese} to word (word <tressed langunges
- ¢.g. English) and phrase (Tocus accent fanguages - e.g. Spanish) Numerous studies
focus on these differences and their discriminating power [fivonen 95, Kruckenherg
95, Lehiste 95,

2.1.2 Linguistic diserimination

I speaker stants telling the sequence “ves. af conrse’, 1he spoken Langoage is likely
English whereas il he tells ‘owd, bien sir', it is reasonable to guess that it is French, It means
that each Janguage uses its own lexicon; these | Finguistic differences are finked with the
cidtural specificity of cach people, and language classilication can be made using the
underlying merphologic families (e.g. the Latin languages...). Fuch langnage has also its
owan Syl sentence patterns are different. 1t is however interesting (o keep in mind that this

clssification is Tar from phonologieal classification.

2.2 Language discriminating strategies

The ultimae goal of an ALT system is 1o provide o decision (whin language is spoken)
from the speech utierance. This process roughly requires that the acoustic signal be decoded
into a phonetic symbol sequence. and that this string be identificd as fiting a language model,
Mowe go fwther in the deseriprion. we will consider 1hat a language Hentification system
consists in - pats:

< Fhe fisa o stage. tan can be called U Acoustic MaodeHing™. provides  features

(Cepstral coetlicients, Fa, ) that chaeterise the pronounced speech signal. This
it i fangoage independent,

¢+ The second stage - the “Acoustic-Phonetic Decoding™ stage — is in charge with

compaiing discrete phonetic symbol sequences from the features provided by the
previous stage, B this stage is language-independent, it results in one single
phonetic sequence. else il results in severat sequences. up e one decoded sequence
per language. The Acoustic-Phopetic Decoders have 1o be ained wilh a corpus
before the identification procedure can oceur.

» The thind stige. known s the “Langeage Modelling™ phase. prowvides likelihood

senies of Hhe phonetic syinbol seqoences for cach Tanguage 16 e wlentily, aned i1 is
abviouady a Tmguage-specitic ik, Usnally speaking. these statistical models are

n-grams, Fach Tanguage Model is trained wiith a speciliv set of phonetic symbole,

amd b the previo e provides A7 phonetic seguenees tor N Lmguages o

rlentile, the syvatem van provnde ap o A AL ke, vortesponding to cach

Banzuage seore decoded incaeh photic sydtenr Thiv ropelaes s not the only

I8

i
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one. and various connections between e Acoustic-Phonetic Decoders and the
Language Models are used fHazen 94, Hicronymous 97, Zisuman 96,

< The fouth stage merges the likelihoods given by the Language Models amd

eventual additional imodules (presody. L) and 1akes the finad decigion. Common

techniques are hased an Bavesian decision o neural network modelling,

Asin other speech processing topics, the challenge is integraie e kiow ledye
gathered by experts in muonuic systens. The figsi featnres that have heen fnvestigated were
phonatactic ruies While the systen developed i Texas Instrnment was based on the namber
of eccurtences in cach Rangunge of atomaticaliy selected aconstiv Rffeis. A S House and
K P Neaberg [Hoase 777 proposed what ¢ be considered ax a precursor system: they model
the different sequences of broad phonetic citegories using Hidden Markov Models (MM <),
This architecture is widely used nowadays as we witl see later,

Beside that, several low-level features have been studied, from raw spectrat
characteristics [Cimarssti 82) to pitch and energy parameters |Foil 86]. It cannot be denicd
that an <fficient acoustic-phonetic deending is essential 1o reach cond performimnces
I

avenveniont way to reach a phonctic symbol sequenee front the aceunstic featores and they are

sling syslems ditfer from cach officrs in this phonetic decoding steteges, TATR S proviee

most widely used. even if other systens based on different statistical modelling or neural

networks fhuthusiing 949 reach slso good identification el

Blonvever s the Deat wystems have taken advantigee fram the phonotacie nides The mow
feeent expretiments condom [Husen 940, Hictonynmwuos 97, Ladine 96, Zismn S0l that a
language modelling based on B-gran statistics i utterly officient (o capture diseriminative
structural information from the spoken language. For this reason. it is pow well aceepted tha
the language modeliing companent is the core of ALY systems. and 1he niain research elforts
have focused on il Furthermore, several approaches are applied for (he general architecture of
the phonctic decoders The Towes compution cost fechnigque perfonn. onby sne acontic
phoncins decading e o ominng e of Jhonene syihoby reading e one senede sy nhuofn
sequence. T Thren peaches very competitive sesulls with this strategy. On the contrny, the

MosE complex sysiems achicve one acoustic-phonctic decoding per fang tage toddentify, uding

a lngrage-specific st of phonetic sytnbols [hamel 90 Ballway solufions e been shrdied
Py MLAL Zisan e onploments an AL application uding b languagespecific decoders
tEnglish, Japanese and Spanishy 1o recognise three odier linguages foamely Prench, Fust and
Tamib), These experinents show tisa, that ing reisig the sumbers of decoders npreves e

porformances, amd wecondly, [HUTETH spreilic acoastic phonctic decoders can e

ditferent from the fangauges o nhentity

The most secent achieve very road reselts thetr overall correct denttdication seey
reaches shoul 90 1ee By econed ileramees A gtz close set kst ioation tsk 1 e
datiare ey tahen Lo the GG multdinguat telfephone speech conpus, that s deseribed in
seetion 5. These very good performances are obtained with quite compiex systems that
include severnt improvements o the acoustic modelfing toender demieation. duration and

prosodic models o and o thes mosnsent e appreas es veselt modoseer pedonnnees

Nevertheless, thes SIS present sene disidvantages and non oprintity thal may

be mvestigated with praly

f
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0

Even il the simplest systems requize only acoustic data without any additional
information, the most common anes can't work without o phonelic tanseription (ie. the
sequence of pronounced phonetic symbols) of the training corpus. Generating  such
transcriptions require an human expent phonctic knowledge for each language. and it is an
expensive task in term of time and service.

In addition. HMMs (or refated models) require a large amount of data te be efficient as
itis demonstrated in the ASR systems. It means that taining the Acoustic-Phonetic Decoder
for @ new language requires an impressive collecl of Labelled daea pronounced by as many

speakers s possible, This fmittion subsiss while the compuation lime cost - hat was until
recertly a very restrictive clement- decreases according to the computer capacities continuons
erowth,

However. these restrictions are common with most speech processing systems. and for
mimerous applications. they are not so disastrous. By contrast. and from a phonetic paint of
view, we present hereafter remarks that Jead us (o propose an alternative approach to the
standard phonetic modelting,

2.3 Motivations for an extend ed phonetic modelling

It appears that the Acoustic-Phonetic decoding phase ix usoalty not cxploited 1o
provide o discriminating information. In his system, T4 Flaven uses the SUMAT Finglish
decader only 1o project the seotstic Teatures (o g diserete symbol space, Zissian uses several
decoders, but his experiments show that the Improvement may merely result from the better
overall phonetic handling. Several systems use a broad sel of phonetic units gathered among
the languages to identify. The main purpose of these Acoustic-Phonetic decoding is to provide
the closest phonetic transcription of an utterance. Poor language-specific discrinmtinating
information is retrieved and the identification seore i entirely given by the lngrage
mndelTing stage. Sliphily diffesen topalogices optimise globatly the Tikelihood of e phonetic
M fn such systens, the phonetic infommtion is taken into

decoding and of the ogram [«
aceount s this embedded scoring, bul 2 seems that an mportant pat of the underlying
information is not explofied.

These observations lesl ux 1o propose an allernative language identi Gealion siritteny.
The mamn idea is 1o take advintage frem both phonotactic madels and phonologic svatem
niodels.

Numerous fingoist works [Maddivson 86, 1indblon RO avsess i lingusges can be
characterised to a0 farge extent by their phonologic system deseription. What we call
phonalogic system is the invéntory ol the phones pionouneed by native speakers for o piven

fngmee Hhiese systems can be ST vl svsten b i comonnng voen

Vowel systems have been widely studied by linguisis Ivpologics exist. Such
viasifications are possibie hecause vowels share an Nomwgensus acoustic strseture |Stlevens
RS, Lindblom 891 it enables 1o deseribe gl vowels, and by esrerd alt vowel systems, in g

connnon space sy aospace devived hom aconstic analysis
On ihe conrary, phonological research on consenant systems e fess exhausdive, even
ifmmerons contzibutions dealing with consomants wab eategmics e avaibable flnarsy 98],

Phe s reasen ic it consonms me deseribed by delnndl is non-vewel somds A wide




diversity of consommts cim he produced resuling in very different acoustic panerns
lricatives. plosives. chicks . ). and no elear commen description exisis. except from the
articulatory point of vicw,

In order 1o inteene phonalogic system description in an awtomaic Systeni, we

cancentrate on vowel systemis, taking advantage from their comman spawe deseriptions. This

! cheice is ateo direcied hy xome ohservations with the PSTD database [Maddieson 86, Vallde

4§, In this 451 language inventory, 177 vowels, derived from 36 hasic voealic qualitics oo

At least in one system. The 5] fanguages <hare 307 vowel systemscincluding 274 Lngnage-

: specific systems, Thas, cven if phonological vowe! sysiem deseriptions e nat eificien

crnough 1o discriminate areng all the languages. they provide a relevin information, W

guess that this phonological characterisiation, cxploited with adequate phonotactic madel nay
improve ALl efficiency,

3 FThe Yowel System M odelling

3.1 Overview of the AL system

Several influences muost be taken inio accomnt when designing wn AL system. The
exploitation of as mamy ciscriminative femures as possible i hardhe i agrecment with

; teasonahle computition:) ol and cxpert hnowledpe The syaaem described in 1

paper mthes ase of stentcally extiacted Tetmes and kizm\'lcclgv_ nonde o be aeneridised

1o other Bingasges cven il no Bibeled dia s available

Fhe segmenial chanacrer of speech signal has heen pssessed By many works, For this
reAsnL aarsystemn applios a sepment hised Processing Thoese segnents e oblned apphving
the “Forward Rachw Dnverpence™ gl | Andre-Obreeht SEEON vowel detecnion
algorithm [Pellegrine 97 providiag a hasic Consonant/Vowel lahel (o cach segment Tollows
Acepstral anafyds gives for cach vocalic segnwent e Mol Prequencies Copatrad Cocilicient
EMPCCY vecton

Hie sconstse phonets, decadmg s petformed by pasatlel | HageespecHic Vowel

System Models (VEM Based on THMAL appreach The outputs consist of e b lihood of the

detected vonek e ek o e VEA and o Consonant/Vow clseqguenee

This sequence can be provessed by Jangunge-specilic N-grams models, in order fo
carch the phonotactical information, This treament i net described in this paper, becaae we
focus on the diseriminatve pewver of dhe phonolopiend featmes The wyaen tha Bits buen
actuliy implemented e digpbaed as Frogge | withont Lmpoaee modelbne byt vagem e

devinion i e v apphed sang ihe T fhonds, oveded by the VS

| S £ Statistival framewort,

The Vowel Systein Model (VSA) is 2 simplificd Hidden Makoy Model where vich
safe corresponds 1o specific sovid. Alier the acoustic provessing, cach sepisent is fabe el
comsoanl or vonel Fo fowae on e i Prndrteoe pover ol the vocalns e e St ot
o ahe TIMNAT Commrd af vl o e P b oo wlabe tae ot s e e b e

vatrens vocalic gualine,

Let £ = /L, 1. ... farf be the A languages 1o identify. The challenge is to
determinate which language is spoken when an unknown speaker pronosnces an utlerance
and the problem is o find the most Hkely Tanguage 17 in the £, set.

Let 2 ={(’.V|’.\’;.,...V,,’.} be the state set of the VSM relative 1o language number §
where s the consonant state.

After the acoustic provessing, we obtain lor each segment a concalenation of
heterogencous features, Lot 7 he the number of segments in the spoken utterance, € = fo, s
- or) is a sequence of observation veelors, Each vector o; consisls of a spectral featore
veetor a,. the duration of the segment 4, and a macro-class flag ci. equal to 1 if the segment is
recognised as a vowel. and equal to O otherwise, tn order (o simplifly the formula, we note ¥,
fei, o} and hmfv.e ).

Given the ebservations (. the most likely fingunge L7 s defined by the following
cyition:

I = wg mux[m::x Prith,, i..[())] iy
A (1!

17aa

" . - b
o, } A state sequence of the /™ Tangoage VSA,

where @ = {(p,‘.(p}...,

Using Bayes' theoren, this expression changes to:

mas (POl 1.) Pricb., 1))
L= ara mas | S5 (2}
(IR Piien

~

=atg mnx[m;lx(?’r(()}fﬁ,_ L pl“]’-!l’.;}]i’lf.’.'}} (3
3y

1 5
It we can consider i i‘r{(z‘iti‘,.l.diu the phonctic Tkelihood wem and thar l’rlfh.’l..) is
the phonetactic likethood cxpression,

Ulnseler the standad TIMM asstmptions, we assume that each segment is conditionally
independent of other segments. This assumption ~ that is common in speech processing - s
improper, but it greatly stmphifies the statistical expression. and in the case of varable
theration hamogencous sepmenleowe guess that this seatistical independenee hypothesis is fees
incenect than ina constant duiation frames meddelling: The phonete modeibing expression s

bence changed s
'
P Ly = [T Prion; 2. i
vt

For cach wegment 4. the « Prievevowel detection provides o Tag e equal 0 zer0 for
vemonants and cgual to one for vowels, I i then possible fosplit (1 asd fopet g conconan

ahavem el pant i e phone(ne mndedione cypresaon

UL P N RRTRT PR RY B NUTRSAOR )
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Asseming that these distributions are gaussian, it can be shown that the cumulative
divergence W, has a zero conditional diift under the hypothesis € = 6. and a conditional drift
equal fo the opposite of the conditional Kullback ' divergenee under the hypothesis § = 8,
(Figure 3a). The algerithm is improved applying the Page-Hinkley rule in order to detect
inversion of trend rather than a simple negative trend (Figure 3b).

The aclually implemented algorithm is modificd by the use of a backward detection

that corrects the possible misses of the forward computation. Interested readers are referred 1o

Inour approach, no fanguage-specitic consenam model js computed. 1t means that for

crequal to 2ero. the likelihood Pr{‘\mg{ﬂ:.f.,) is language independent. (5) simplifies 1o

Precieh Ly =TT vfr = O retvde; oy

el ot

Given, (2 and 161, 1he overall larrmage Tikelihomd yields:

. ' ’ o : ) )
fo=arg mux[m:m s, I.,_I(J)J ERUTEIE m::.\'[ n 11 \uf(pj R .’.,).Prrrlh{i,,) el {7 i [André-Obrecht 88} for a detailed study of the Forward Rackward Bivergence Algorithm.
ey Sty 1% 0n 81 LN i ’ i

4.1.2 Speech Activity Detection
Our LID systens has been tested with daia from the OGT METS corpus. These data are
secorded in cosditions clese from real lite, and (he utleranees often present fung sifences with

In our experiments. the « poees probability of occurrence of cach lnguage is asswmed 1o he
cquali it leads finally 1o:

!
- !

. no voice activity, We decide 1o Jocate fhese areas that cary no phonetic or >honotactic
[E I’r(‘\.‘ffp,.,'.‘i I‘;(llhj.'.,)J (¥) ¥ ) ! !
|

Lo e nn
[EFIEM] -

signilicance.

Avcording fo the renik seetion 31 we mmplement a version o the alanrithiy (0 wdy Phe algoriim perfosmic o hasic aconstic sanistical atalysis and a thieshold 7, is
e diseriminaive povwer of vowel syadem wodeling withour other featuges 1ike phonotctic vomputed Tram the sandind deviation of cach segmuents Let = be the acorstic signal and § =

wiles. Usider this assumprion, the HATM hocomes creodie Prdilliy s tndependent of (he : 150 5o sr) e segnsents computed by the Forward-Backward Divergence algorithm, 7, is

e . - . viven by:
language 1 The more likchy Lingonge is given hy: given by

fo=aominlea, (o (e

i HIFNTTHEN m.n{
[ 7-l>--wf\

.
Flvecador 1o )]
: J where o (2)is the standard deviation of the signal = in the o™ senent and o is @ seale

lactor. Tnoour experiments, g cynils 2.8,

i
I
|

4 Implementation . . . ;
Segments presenting a standard deviation grealer than 7, are flagged as speech.

. SE T = o7 . . NIH O Y. i . . . C . Lo .

I our experimental platform (3 e 1) the Acoustic: modelling i Yanguage | otherwise, they are considercd as sitence. In order fo distinguish no activity segments (i e, :

independent, while the Phonctic modeliing consisin in fanguage specific Vowel Systen i preusesy from shont silences cinbedded in speeeh production (yvpically silences preceding :
Maodels ; Bursts & piosive sounds or shor hesilations), the derion of the segient is used: silence

Fig 2 ] i segments shorter than 150 mis are considered as significant silences while Jonger segments are ;

41 Acoustic Mudeliing i flagged as no-activity perinds. If neighbowing segments are fagged s sitence. the 1otal E

The purpese of ihis phase s o provide o seuetee of voealic and consonangal ; thiration is taken into accouns !

MOERICDI Aecending oo iodyl eation DN consominis e fenored, el RIS (ST E Fhe subsequent provessing ignores the NO-Aclvity segiments, .

camputed only for vougt segmenis. Thiee pre-processiog are performed betore e pariincter ! :

estimation. The “Forward- Rackwaid Piverpence™ whporithin provides a selovang sCRICIaien i L3 Vowel Dereetion :

mere adapted than e chesicnt comtan dusition fame dechnique. A Speech Activity The vawel detection algorithm is based on spectral analysic: Dhoe ta the production

daoresenalors i resuls

Deteetor s cach sepinent not 1o pravess Jong stlences, amd a vowel detecior i in chape structure of vowels, (he voca! fand nasal s sone vases) iract behaves

with locating vocalic segmenis in the wierance, Finally, o cepsteal salyaes i perfommed 1o i a formant-antilommant structure for the spectrum of o vewel. Additionatly. antiformanis e

|
1
H

generate the inputs of the VSAlx sty lessremarkabke than Tornsmis

L0 A prioei Segmentation We compuie a criterion called Fee (Reduced energy cumuedative) for cach frame of the

signal. This criterion is derived from 24 energy coetlicients achisved thioargh o Mol-scale

The segmentation resuiis from a statistical study of 1the acoustic sivnal. A diverzence i . P .
L M - N b ; lilter Bank spectial analvas Fhe sdgonithog s e hased in order to abfirn e acemane
Criterion s compuaicd o eact monnent o Between twe AR et Oa w1 caimated o oo i .
; ol loeatmg than with g serawentl approach,
dilferent wmdon - o e dnnated on rrosvig waadow ) whinde th o esbaated on g ~Jroer :
Loduraion <liding one [nfont The divergenee ariaion is computed fron, the ciome entropy : et 7 be the number of the current frame and £40) be the energy of the 7 frame in the
e - i o - = . . . )
betwees the diseiibutions of i, and it : Mol filler, Let Etrybe the relaned mean of filier energics and £7/) the 1ol energy of the /7

1 ‘ i




frame, In order 1o 1ake anty voiced sounds into account, let Erafid be the energy in the Jow
Trequencics (100 1 - 1000 1y Mel Filiers The criteran iv given hy

'

Fon
Koty [”'La(.’;.m--l.m) ()
(1)

where § is equal to one for Tilers frem 300 1y, 1o 3206 Mz, and it is equal o zero Tor
all other frequencies.

The Ree criterion is o kind af similarity mcssire briwees the spectead stiuctnig ol the

frame and o theoretical formamic stracioe, Vowes are chareiorised by the highest vaiues
and we consider that the peaks of Recrr) wre located in vocnlic sounds {Figare ).
Additionally, we do not take into consideration detections oceuning in segiment shorter than 15
ns.

The main advantage of 1his atgorithm s that 31 requires no labelled data and 0o supervised
learming. Thus. it is hangunge independent and fully operating whatever fanguage is stuelicd.
4.1.4 Cepsiral Analysis

Each detected vowel s represented with a set of 8 Mol-Frequency  Cepsiral
Coefficients (MTCCs). The cepsiral analysis s performed using o 256-poing Haimming

window centied on the Re peak detection, via o Fast Fourier Transform, This parameter

vector is extended with the duration of the underlying segment.

A cepstral sublraction is performed (o operate a bitnd deconvolution o remove the
channel effect, For cach recording session, the average MECCx vector is compated over ol
vowelst i s then subleacted from cach vowel coctTicients. This method s shightly difTerent
from the classical cepstrad sublraction sinee the average values are not compuied over the
whole utierance or fhe silence frames, bus enly over vocalic frames. Recent sigdies tend 1o
show that the resulting channel estimation is not deteriorated and even thay j1 nay be more
efficient {Puet 97).

Figure 5 summaries the acoustic pre-processing with an example hom the 01
database. The recalis of voice activity and vowel detection are Fepresenicd and the automarne
seymentation i also displved . We can e that the vowel detechon nEY improve the
segmentation and add missed transitdons, Tor example between (be two eo-mrticulated vow ols
o and o'

4.2 Phanetic ecoding

Vowed Syaletis Aok ¢ WEMS consaa strmphhed TIVA with an vigodie opologs

and one ganssian pdf £ ) for cach voeatic sfare,

Lot Xo= fuve g e e g et and 7 e Voorp g Ld feregro 3oy LA TN}
B the pavameter set thar detfines o mixtre o g pedimemionid Gaussinne the mode! tha

maximizes the overall Hikelibood of the duta is given hy:

i omy Ha z\i J "

v 2Ty

|
|

i
i
I
i
i
i

. P n - [ .
where g is the miving weighl of the £ Gaossian,
Steven Now L studhies selations between iamssian stz modeis el VO detil in
s I Fhesis [Nowkan 91, Fle shows that ander the assumptions:

+ The summation can be approximated by the maximum termy in the
semmation {"Winner-take-ali™ assumiption),

+  Gawussians weighting coefficients are equal,

-+ Gaussians me spherically symmelric € e, L = o {ywhatever &),

the estimation of the maximam likekihood parameters reduces 1o the feast squares
equation. In the case of the Euckidean distance, this estimation is given by the expression:

N

= hl
N =arg m!i”;_'\}f- ]I]}i::ﬂ.\'.—;hﬂ' :m‘gn}in; il:}i(n’F\—‘ll:ﬁ’ i13)

i

”
where 17 7= {0 foe ., ph ) is the corresponding codebook.

This way. a Vector Quantization (VQ) algorithm computes a multi-dimensionat
reference map of the voealic patterns. From a theoretical point of view. it i incorrect Lo say
that we mode! the phenological vowel system of the fanguage: In fact, we mode! its spoken
voealic system: the vowels are in context and strongly co-aiticulated, diphthongs may also be
detected and modelled. and the reference pattens reselt from all these factors, In our
application, we ese the LBG-spiitting {Linde 80j algerithm to estimate the codebeok that we
identify as the VSM,

During the identification phase. al the vowels detected in the utterance are gathercd
and parameterised by the acoustic modeifing. The distortion between this set of vowels ¥ =
(v ve v oand each of the My Vowel Sysiems Models is computed. Given that the
codebook {7 is now specific o language £, the identified language L' is aiven by:

A B
I =arzmin z,’}}i”(ﬂ-"'_-“iﬁ-) (14
s fos )

P Ny

§ Experinients

The ALT system is lested with the OG M LTS corpus {Lander 951 We Jinil presently
OUr experiments (o five languases (French, Japanese. Korean, Spanish and Vietsmese),
These Janguages have been chasen beeanse of their phonologival vowel systems (see Figure
OV Spanish and Lapapese vowel systems are sather clemwentary (5 vowels) and yuast-identic
while Korean and Freneh systess are more complex, with severad vowele with the same
quality, Vietmmese system is of i crage complexity,

According ro the American National Insditite of Stmeards andd Technology (NIST),
the data is divided into three carpor. namely the learning st the development set and the test
el Fach corpus condists i severnl tterznees (the divs of the week, 1he digit and jonger
srcanstained specel prononaced by eachy speaker, Tiwre 1w nn overlap between the speakers

el cach corpus

ey



Xr danguage in the learninyg one. I our vEpesimenis we don’t the ivo aecount female

: 1 There are abour 26 speskery per kmguage in the development subser and S0 speakers

speabers beeana of the Pt mbnber e than 234y

e This Tabeltimg

At e these data s Labelled oty 1o broad phometic culy
is sutomatically senciared and we pse it o fest voweel detection. Insertion and RINTESTINETIICN
are caiculated according 1o OGT vowel lahelling {Table |y,

Tahle | The language identification experiments are performed using two s owel parcter
deseripsion: the firg ong iy the hasic 8 MIFCOs deseription {e, ) while the second ane s

improved by the segment vowel deration {a, o}, Each VSM is trained with all the vowels
detected for all speakers of (he tiaining scl of cach lainguage (Table 2) and the lanpuage
identification resulis nre given for the development set. With the LBG-splitting algorithin, we
constrain the codebook size 10 20 and 70 clusters, in order 16 test 2 codebooks frespectively

called LBG-20 and LBG.71) per fanguage.

Table 2 The language identifieation decision is taken on the set of vewels detecied i the to

utterance. Table X provides the resulis aceording 19 the duration of the 1ot utieramee: in HRITEN|
Cxperiment. we pse only the vowels detected in the 45 second duration unconstrined
uterance for cach speaker. and in o second testwe gaither all vowels {or a given speiker
{about 2 minoe duration) and we use them,

Vowel duralion improves significanily 1he performances of the vowel SYSiem
identification and the correct idemtification reaches 57.3 % with the 45 second utierances,

However. the performance decienses obviousty with the lengil of speceh since the more the
vowed selis large, the more (he estimarion is correct. Another olfect of the devrease ol e
vowel nuember is thar the LBG-20 codehouk reuches better results than the LBG-70 one (with
45 second duration viterances), I sugeests that it needs muore dary 10 correcthy estimate thie

likelihond of the vowels from i fest utterimiee i the 70 codeword moded than i the 2
cadeword model. At lant, it is also Important to note that the vocalic senmd duration represenis

only 215 < in the 45 second utierance tthis value is the mean value upon the developmem
!

sef). It means that we gt 57.3 % of corred! identification using less than § % of the da

6 Conclusion

This work proves thi o sigmibeant past ol e Binguage chisactetisation i cmbiedded
il vowel sysiem. We show that it is possible 1o exiact this infarmmtion ad to model i gy
@ language identification task. The identificanon rates tha we reach with onty the vowel
svslem identification is very geod. and it is essential 1o 1ake into accoumnt that more than 98
pereent of the data is not expioited

These resulis of iy TR Perspeciives:

= USING A strict Ganssion misture maodetting instend of g consirained one May improve
vowel system modelling, The w cights represent the eccarrences of each vocalic soand in the
fanguage and the parameter esti mation ix perfarmed using 1he EM algorfthm,

- taking advantage frony the stale seguence throngh a phonotactic meedeling hased on p
Negram approach shouldd imjnove the AL Sy em

s

- another promicing approach is 1o develop a specific model for other sounds
categeries fike fricatives or plosives Tor example. This way, it wilt be possihde to use together
severtl seundpecific syaems tha may be s poweiful afternastive 1o standard all-sound

phonctic models
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Vowel System Model - 1

Aprion'Segmenlal@*--bj Acoustic ModelﬁE] =
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Figure 1: Svnopsis of the VSM -based Autmmatic Language Mentification i'\‘_\'.m'm

for N languapes,

1
i

A priori Segmentation

fn.d.c,)

{5}

Acoustic Modelling

Lanpuape Tedependent Languspe Dependent

Figure 2: Block diagram of the implemented System
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Fignre 3: Variations of the cirenditive sum tesd:

a)  the statistics W,

b)Y the statistics conpled 1o Hinkley's stopping role ”{, .

Avaustic Signal - “sanzedi”

o - l%ﬂcvz.;g._...m%“. !
W
Kee Criterion
1§ |
5x10% . ’
° 5 625 ms
-
.
ar

Acoslic Sipnal -2 g !

Q

37 ms

Figrere 4 Example of a vowel detection:

a)  Acoustic Signai (French word “samedi’™) and Rec criterion;
b)  Mel-scale filter analysis for the vowe] *a®

1
ta




125 ms

-

T Speech

LT3 Sho Siemee
BET N Specdh Acan

Figure 5: Example of Acoustic pre-processing — the French sentence is .. ne

plent pas aufant gl the vertien] Dk lines

verticat prey tines are the detected vowel,

are the segnrent howndaries; (he

close French Japanese
" i - % %
(II)L'H
Korean Spanish Viemamese

L

Figure 6: UPSID Phonological vowel systems ~ The draw in the upper Teft corner
displinys how vowels are represented | Valtée B4}

2




French Japanese ‘ Korean Spanish ’ Viethamese
Deleticn rate 434 % 5.66 % 693 % 6.58 % 4.09%
inserionrale | Ti0.76 % 830% 1 1828% | g 16.84%

Tabte 1: Vawel detection resulis with the fabeHed GG subsey

French Japanese

Korean I Spanish 'Vietnamese

L

8 MFCCs 18045 16108

14283 I 18583 ] 13287

26

Tabte 2: Number of detected vowelsin the OGI Tearnitg sof




LBG-20 LBG-70
[ Znhn s T
8 MFCCs 50.7 % 56.2 % 52.0 % 66.2%
8 MFCCs + Duration 57.3% 737 % 56.0 % 76.2 %

Table 3: Correct Identification scares Tor a & Lanmrage AL task




